
 page 1 of 8

COE 308 – Computer Architecture

Final Exam – Fall 2008

Saturday, February 7, 2009

7:30 – 10:00 AM

Computer Engineering Department

College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

Student Name: SOLUTION

Student ID:

Q1 / 20 Q2 / 15

Q3 / 20 Q4 / 20

Q5 / 25

Total / 100

Important Reminder on Academic Honesty

Using unauthorized information on an exam, peeking at others work, or altering
graded exams to claim more credit are severe violations of academic honesty.
Detected cases will receive a failing grade in the course.

 Page 2 of 8

Q1. (20 points) True or False? Explain or give the right answer for a full mark.

 a) On a read, the value returned by the cache depends on which blocks are in the cache.

 False, it depends on the last value written to the same memory location

 b) Most of the cost of the memory hierarchy is at the L1 cache.

 False, most of the cost is at the L2 cache (takes more area on chip)

 c) The higher the memory bandwidth, the larger the cache block size should be.

 True, if the memory bandwidth is high then a larger block size can be transferred in
same amount of time

 d) In reducing cache misses, capacity is more important than associativity.

 True, increasing the capacity eliminates more cache misses than higher associativity

 e) Compulsory cache misses can be reduced.

 True, compulsory misses can be reduced with prefetching

 f) Allowing ALU and branch instructions to take fewer stages and complete earlier than
other instructions does not improve the performance of a pipeline.

 True, pipeline performance is related to throughput, not the latency of instructions

 g) Increasing the depth of pipelining by splitting stages always improves performance.

 False, not always, at some point pipeline register delays become significant, and
more bubbles or stall cycles must be introduced if the pipeline depth is increased

 h) The single-cycle datapath must have separate instruction and data memories because
the format of instructions and data is different.

 False reason, it is because both memories should be accessed during the same cycle
and both are single ported.

 i) A given application runs in 15 seconds. A new compiler is released that requires only
0.6 as many instructions as the old compiler. Unfortunately, it increases the CPI by
1.1. We expect the application to run using this new compiler in 15×0.6/1.1 = 8.18 sec

 False, it should be 15×0.6×1.1 = 9.9 sec

 j) If Computer A has a higher MIPS rating than computer B, then A is faster than B.

 False, it is possible to have higher MIPS rating and worse execution time.

 Page 3 of 8

Q2. (15 pts) Consider a direct-mapped cache with 128 blocks. The block size is 32 bytes.

a) (3 pts) Find the number of tag bits, index bits, and offset bits in a 32-bit address.

Offset bits = 5

Index bits = 7

Tag bits = 32 – 12 = 20 bits

b) (4 pts) Find the number of bits required to store all the valid and tag bits in the cache.

 Total number of tag and valid bits = 128 * (20 + 1) = 2688 bits

c) (8 pts) Given the following sequence of address references in decimal:

20000, 20004, 20008, 20016, 24108, 24112, 24116, 24120

Starting with an empty cache, show the index and tag for each address and indicate
whether a hit or a miss.

Address = Hex Offset (5 bits) Index (7 bits) Tag Hit or Miss

20000 = 0x4E20 0x00 = 0 0x71 = 113 4 Miss (initially empty)

20004 = 0x4E24 0x04 = 4 0x71 = 113 4 Hit

20008 = 0x4E28 0x08 = 8 0x71 = 113 4 Hit

20016 = 0x4E30 0x10 = 16 0x71 = 113 4 Hit

24108 = 0x5E2C 0x0C = 12 0x71 = 113 5 Miss (different tag)

24112 = 0x5E30 0x10 = 16 0x71 = 113 5 Hit

24116 = 0x5E34 0x14 = 20 0x71 = 113 5 Hit

24120 = 0x5E38 0x18 = 24 0x71 = 113 5 Hit

 Page 4 of 8

Q3. (20 pts) A processor runs at 2 GHz and has a CPI of 1.2 without including the stall
cycles due to cache misses. Load and store instructions count 30% of all instructions.

 The processor has an I-cache and a D-cache. The hit time is 1 clock cycle. The I-cache
has a 2% miss rate. The D-cache has a 5% miss rate on load and store instructions.

 The miss penalty is 50 ns, which is the time to access and transfer a cache block between
main memory and the processor.

a) (3 pts) What is the average memory access time for instruction access in clock cycles?

 Miss penalty = 50 ns * 2 GHz = 100 clock cycles

 AMAT = hit time + miss rate * miss penalty = 1 + 0.02 * 100 = 3 clock cycles

b) (3 pts) What is the average memory access time for data access in clock cycles?

 AMAT = 1 + 0.05 * 100 = 6 clock cycles

c) (4 pts) What is the number of stall cycles per instruction and the overall CPI?

Stall cycles per instruction = 1 * 0.02 * 100 + 0.3 * 0.05 * 100 = 3.5 cycles

Overall CPI = 1.2 + 3.5 = 4.7 cycles per instruction

 Suppose we add now an L2 cache that has a hit time of 5 ns, which is the time to access
and transfer a block between the L2 and the L1 cache. Of all the memory references sent
to the L2 cache, 80% are satisfied without going to main memory.

d) (4 pts) What is the average memory access time for instruction access in clock cycles?

 Hit time in the L2 cache = 5 ns * 2 GHz = 10 clock cycles

 AMAT = 1 + 0.02 * (10 + 0.2 * 100) = 1.6 clock cycles

e) (4 pts) What is the number of stall cycles per instruction and the overall CPI?

 Stall cycles per instruction = (1 * 0.02 + 0.3 * 0.05) * (10 + 0.2 * 100) = 1.05 cycles

 Overall CPI = 1.2 + 1.05 = 2.25 cycles per instruction

f) (2 pts) How much faster will the machine be after adding the L2 cache?

 Speedup = CPIc / CPIe = 4.7 / 2.25 = 2.09

 Page 5 of 8

Q4. (20 pts) A program consists of two nested loops: a smaller inner loop and a larger outer
loop. The general structure of the program is shown below. All memory addresses are
shown in decimal. Each decimal address points to an instruction in memory. All memory
locations in the various sections contain instructions to be executed in straight-line
sequencing. Instructions 128→255 form the inner loop and are repeated 20 times for
each pass of the outer loop. Instructions 64→127 and 256→575 form the outer loop and
are repeated 10 times. The program is to be run on a computer that has a direct-mapped
instruction-cache with 64 blocks, where each block can store 4 instructions. The hit time
is 1 clock cycle and the miss penalty is 20 cycles.

a) (6 pts) What is the total instruction count and how many I-cache misses are caused by
the program?

 0 → 63: 64 instruction = 16 I-blocks => 16 I-cache misses

 64 → 127: 64 instructions = 16 I-blocks => 16 I-cache misses

 128 → 255: 128 instructions = 32 I-blocks => 32 I-cache misses (all 20 iterations)

 Inner loop can fit inside I-cache (only first pass causes I-cache misses)

 256 → 575: 320 instructions = 80 I-blocks => 80 I-cache misses

 Outer loop I-cache misses = 10 * (16 + 32 + 80) = 1280

 576 → 999: 424 instruction = 106 I-blocks => 106 I-cache misses

 Total I-cache misses = 16 + 1280 + 106 = 1402

 Total I-count = 64 + 64*10 + 128*20*10 + 320*10 + 424 = 29,928

b) (2 pts) What is the I-cache miss rate?

 Miss Rate = 1402 / 29,928 = 0.0468 = 4.68%

0

64

128

255

575

999

Start

Inner loop
executed
20 times

Outer loop
executed
10 times

End

 Page 6 of 8

c) (4 pts) If only cache misses stall the processor, what is the execution time (in
nanoseconds) of the above program on a 2 GHz pipelined processor?

 Total clock cycles = 29,928 + 1402 * 20 = 57,968 cycles

 Execution time = 57,968 * 0.5 ns = 28,984 ns

d) (8 pts) Repeat (a) thru (c) if a bigger block size that can store 8 instructions is used. The
total number of blocks in the I-cache is still 64. What is the speedup factor?

 0 → 63: 64 instruction = 8 I-blocks => 8 I-cache misses

 64 → 127: 64 instructions = 8 I-blocks => 8 I-cache misses

 128 → 255: 128 instructions = 16 I-blocks => 16 I-cache misses (all 20 iterations)

 Inner loop can fit inside I-cache. Only first pass causes I-cache misses

 256 → 575: 320 instructions = 40 I-blocks => 40 I-cache misses

 Outer loop I-cache misses = 8 + 16 + 40 = 64

 Outer loop can fit inside I-cache. Only first pass causes I-cache misses

 576 → 999: 424 instruction = 53 I-blocks => 53 I-cache misses

 Total I-cache misses = 8 + 64 + 53 = 125

 Total I-count = still the same = 29,928

 I-cache Miss Rate = 125 / 29,928 = 0.418%

 Total clock cycles = 29,928 + 125 * 20 = 32,428

 Execution time = 32,428 * 0.5 ns = 16,214 ns

 Speedup = 28984 / 16214 = 1.79

 Page 7 of 8

Q5 (25 pts) Use the following MIPS code fragment:

I1: ADDI $3, $0, 100 # $3 = 100
I2: ADD $4, $0, $0 # $4 = 0
Loop:
I3: LW $5, 0($1) # $5 = MEM[$1]
I4: ADD $4, $4, $5 # $4 = $4 + $5
I5: LW $6, 0($2) # $6 = MEM[$2]
I6: SUB $4, $4, $6 # $4 = $4 – $6
I7: ADDI $1, $1, 4 # $1 = $1 + 4
I8: ADDI $2, $2, 4 # $2 = $2 + 4
I9: ADDI $3, $3, -1 # $3 = $3 – 1
I10: BNE $3, $0, Loop # if ($3 != 0) goto Loop

a) (10 pts) Show the timing of one loop iteration on the 5-stage MIPS pipeline without forwarding hardware. Complete the timing table, showing
all the stall cycles. Assume that the branch will stall the pipeline for 1 clock cycle only.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

I1: ADDI IF ID EX M WB

I2: ADD IF ID EX M WB

I3: LW IF ID EX M WB

I4: ADD IF stall stall ID EX M WB

I5: LW IF ID EX M WB

I6: SUB IF stall stall ID EX M WB

I7: ADDI IF ID EX M WB

I8: ADDI IF ID EX M WB

I9: ADDI IF ID EX M WB

I10: BNE IF stall stall ID

I3: LW IF IF ID EX M WB

I4: ADD IF stall stall ID EX M WB

 Time of one loop iteration = 15 cycles

2 stall cycles

2 stall cycles

2 stall cycles

1 delay cycle

 page 8 of 8

b) (5 pts) According to the timing diagram of part (a), compute the number of clock cycles
and the average CPI to execute ALL the iterations of the above loop.

There are 100 iterations

 Each iteration requires 15 cycles =
8 cycles to start the 8 instructions in loop body + 7 stall cycles
There are 2 additional cycles to start the first 2 instructions before the loop.
Therefore, total cycles = 100 * 15 + 2 (can be ignored) = 1502 cycles ≈ 1500 cycles

 Total instruction executed = 2 + 8 * 100 = 802 instructions (counting first two)
 Average CPI = 1502 / 802 = 1.87
 If we ignore first two instructions and the time to terminate last iteration then
 Average CPI = 1500/800 = 1.88 (almost same answer)

c) (5 pts) Reorder the instructions of the above loop to fill the load-delay and the branch-
delay slots, without changing the computation. Write the code of the modified loop.

 ADDI $3, $0, 100 # $3 = 100
 ADD $4, $0, $0 # $4 = 0
 Loop:
 LW $5, 0($1) # $5 = MEM[$1]
 LW $6, 0($2) # Moved earlier to avoid load-delay
 ADDI $3, $3, -1 # Moved earlier
 ADD $4, $4, $5 # $4 = $4 + $5
 ADDI $1, $1, 4 # $1 = $1 + 4
 ADDI $2, $2, 4 # $2 = $2 + 4
 BNE $3, $0, Loop # if ($3 != 0) goto Loop
 SUB $4, $4, $6 # Fills branch delay slot

 Other re-orderings are possible as long as we avoid the load

delay and we fill branch delay slot with an independent
instruction. We should be able to reduce the stall cycles to 0.

d) (5 pts) Compute the number of cycles and the average CPI to execute ALL the iteration
of the modified loop. What is the speedup factor?

There are 100 iterations

 Each iteration requires 8 cycles =
8 cycles to start the 8 instructions in loop body + 0 stall cycles
There are 2 additional cycles to start the first 2 instructions before the loop
+ 4 additional cycles to terminate the ADDI instruction in the last iteration.
Therefore, total cycles = 100 * 8 + 6 (can be ignored) = 806 cycles ≈ 800 cycles

 Total instruction executed = 2 + 8 * 100 = 802 instructions (counting first two)
 Average CPI = 806 / 802 = 1.00
 If we ignore first two instructions and the time to terminate last iteration then
 Average CPI = 800/800 = 1.00 (almost same answer)
 Speedup Factor = CPIpart-b/CPIpart-d = 1.88/1.00 = 1.88

